

STSJ18NF3LL

N-CHANNEL 30V - 0.016 Ω - 18A PowerSO-8TM LOW GATE CHARGE STripFETTM II POWER MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D
STSJ18NF3LL	30 V	<0.019 Ω	18 A

- TYPICAL $R_{DS}(on) = 0.016 \Omega @ 10V$
- TYPICAL Q_q = 12.5 nC @ 4.5 V
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED
- IMPROVED JUNCTION-CASE THERMAL RESISTANCE

DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronics unique "Single Feature SizeTM" strip-based process. This silicon, housed in thermally improved SO-8TM package, exhibits optimal on-resistance versus gate charge tradeoff plus lower $R_{thj-c.}$

APPLICATIONS

 SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY CPU CORE DC/DC CONVERTERS FOR MOBILE PCs

Figure 1:Package

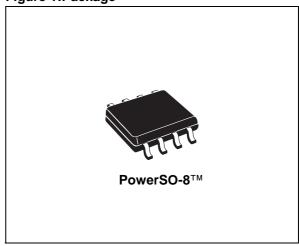
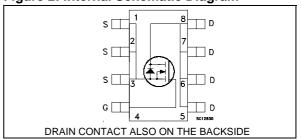



Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STSJ18NF3LL	18F3LL)	PowerSO-8	TAPE & REEL

Table 3: ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	30	V
V_{GS}	Gate- source Voltage	± 16	V
I _D	Drain Current (continuous) at T _C = 25°C (*)	18	Α
ΙD	Drain Current (continuous) at T _C = 100°C(*)	18	А
I _{DM} (●)	Drain Current (pulsed)	72	Α
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$ Total Dissipation at $T_C = 25^{\circ}C$ (#)	70 3	W

^(•) Pulse width limited by safe operating area.

March 2005 Rev. 1.0 1/9

^(*) Value limited by wires bonding

Table 4: THERMAL DATA

T '	Thermal Resistance Junction-case Max (*)Thermal Resistance Junction-ambient Max Maximum Operating Junction Temperature	1.8 41.7 150 -55 to 150	5. O, M,O, M,O,
T_{stg}	Storage Temperature	-55 to 150	°C

^(*) When Mounted on FR-4 board with 1 inch² pad, 2 oz of Cu and $t \leq 10 \mbox{ sec.}$

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED)

Table 5: OFF

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating T_C = 125$ °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			±100	nA

Table 6: ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = 250 \mu A$	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 4.5 V	I _D = 9 A I _D = 9 A		0.016 0.019	0.019 0.022	Ω Ω

Table 7: DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gfs (*)	Forward Transconductance	$V_{DS}=15 V$ $I_{D}=9 A$		17		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$		800 250 60		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

Table 8: SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{aligned} &V_{DD} = 15 \text{ V} & I_{D} = 9 \text{ A} \\ &R_{G} = 4.7 \Omega & V_{GS} = 4.5 \text{ V} \\ &(\text{Resistive Load, Figure 15}) \end{aligned}$		18 32		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} =15V I _D =18A V _{GS} =4.5V (see test circuit, Figure 16)		12.5 3.2 4.5	17	nC nC nC

Table 9: SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$\begin{split} V_{DD} &= 15 \text{ V} & I_D = 9 \text{ A} \\ R_G &= 4.7 \Omega, & V_{GS} = 4.5 \text{ V} \\ \text{(Resistive Load, Figure 17)} \end{split}$		21 11		ns ns

Table 10: SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				18 72	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 18 A V _{GS} = 0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 18 \text{ A}$ di/dt = 100A/ μ s $V_{DD} = 15 \text{ V}$ $T_j = 150^{\circ}\text{C}$ (see test circuit, Figure 17)		23 17 1.5		ns nC A

Figure 3: Safe Operating Area

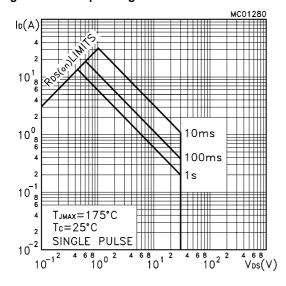
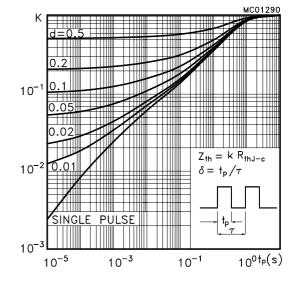



Figure 4: Thermal Impedance

^(•) Pulse width limited by safe operating area.
(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.

Figure 5: Output Characteristics

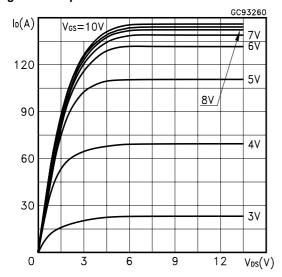


Figure 7: Transconductance

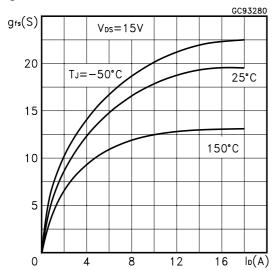


Figure 9: Gate Charge vs Gate-source Voltage

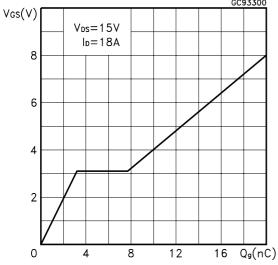


Figure 6: Transfer Characteristics

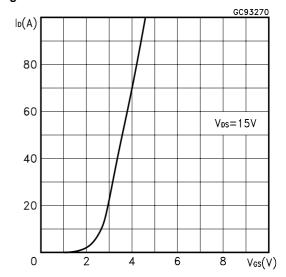


Figure 8: Static Drain-source On Resistance

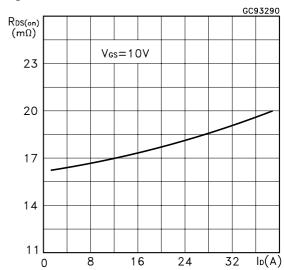


Figure 10: Capacitance Variations

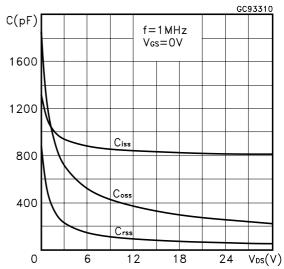


Figure 11: Normalized Gate Threshold Voltage vs Temperature

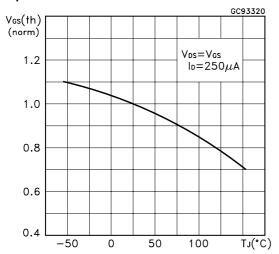


Figure 13: Source-drain Diode Forward Characteristics

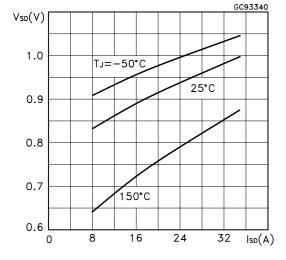


Figure 12: Normalized on Resistance vs Temperature

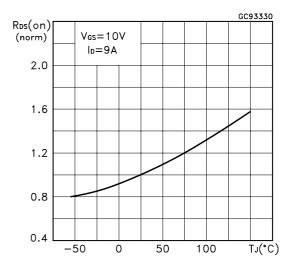


Figure 14: Normalized Breakdown Voltage vs Temperature.

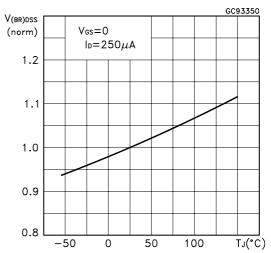


Fig. 15 Switching Times Test Circuits For Resistive Load

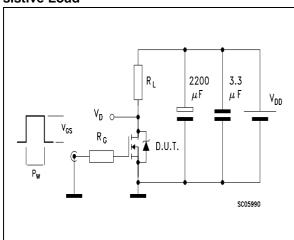


Fig.16: Gate Charge test Circuit

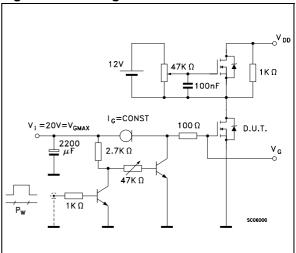
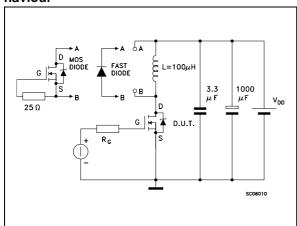
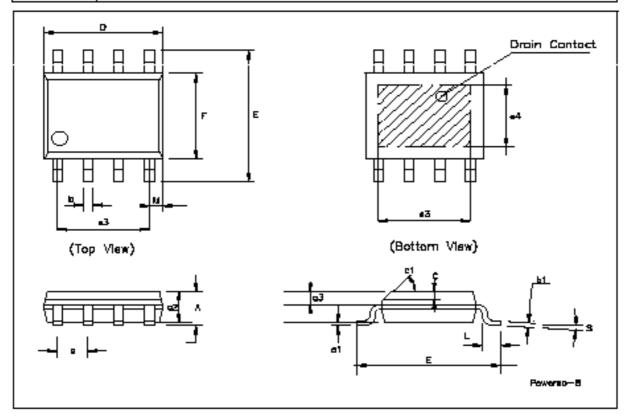




Fig. 17: Test Circuit For Diode Recovery Behaviour

PowerSO-8™ MECHANICAL DATA

DIM.		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45°	(typ.)	•	
D	4.8		5.0	0.188		0.196
Ε	5.8		6.2	0.228		0.244
е		1.27			0.050	
63		3.81			0.150	
e4		2.79			0.110	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8° (r	nax.)	•	

STSJ18NF3LL

Table 11:Revision History

Date	Revision	Description of Changes
March 2005	1.0	FIRST ISSUE

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America. www.st.com

